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Systematic graphical correction of the hypernetted chain 
theory for the one-component plasma 

David MacGowan 
Department of Natural Philosophy, University of Glasgow, Glasgow G12 8QQ, UK 

Received 21 August 1981 

Abstract. The Fourier transforms of the lowest two orders of bridge graphs in the 
Abe-Meeron expansion for the one-component plasma are evaluated numerically after 
using the Goursat-Feynman relations to reduce the dimensionality of the integrals involved. 
After inverse Fourier transformation, the results are used to form approximants for the 
complete set of bridge graphs. These are then incorporated into modified hypernetted chain 
(HNC) theories which are expected to be useful in the intermediate-coupling regime. The 
results of the modified HNC equations improve upon the usual HNC results in terms of 
virial-compressibility consistency and they suggest that the excess internal energies found 
by Monte Carlo simulation may not be very reliable in the intermediate-coupling regime. 

1. Introduction 

In recent years there has been great interest in the statistical mechanics of strongly 
coupled plasmas. Baus and Hansen (1980) have given an excellent review of this 
subject. The simplest model system, which has been studied extensively, is the classical 
one-component plasma (OCP). It consists of classical point ions embedded in a uniform 
neutralising background. The OCP represents a good approximation to the material in 
the interior of a white dwarf star and is also useful as a reference system (Galam and 
Hansen 1976) for perturbative treatments of more realistic plasmas, such as those 
formed in the later stages of inertial confinement implosions. 

We consider an OCP in thermal equilibrium at temperature T = (keP)-’ and with ion 
density p. The interaction energy between a pair of ions at separation r is d ( r )  = 
(Ze)’/r. The conventional coupling constant for a strongly coupled OCP is 

r = P(ze)’/a (1) 

where a = ( 3 / 4 ~ p ) ” ~  is the ion sphere radius. However, since the present work utilises 
the weak-coupling (nodal) expansion, reviewed recently by Deutsch et a1 (1981), it is 
more appropriate to work in terms of the alternative coupling constant 

A = p (Ze)’/AD (2) 

where AD = [4?rpp(Ze)’]-”’ is the weak-coupling screening length (the Debye length). 
A and r are related by 

(3) A = 3112r312. 
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In keeping with the use of (2) rather than (l), it is natural to work in terms of the 
dimensionless length 

5 = r / A D  

rather than the more frequently used 

x = r/a. 

Since the present calculations involve the weak-coupling expansion, results obtained 
from them cannot be expected to apply beyond the weak- to intermediate-coupling 
regime. They will therefore be relevant to inertial confinement plasmas ( A S  2) but 
probably not to much more strongly coupled plasmas such as those in white dwarf stars. 

The thermal equilibrium of the OCP has been simulated using Monte Carlo (MC) 
techniques of increasing precision (Brush et a1 1966, Hansen 1973, Slattery et a1 1980) 
and the MC results are generally regarded as exact within statistical uncertainty. There 
is nevertheless great interest in obtaining accurate theoretical results for the OCP, partly 
due to the computer time requirements of MC simulations for multi-component ionic 
systems. One of the most fruitful approaches to a theoretical description of the OCP has 
been through the fluid structure integral equations, the best known of which are the 
Born-Green-Yvon, Percus-Yevick and hypernetted chain (HNC) equations. It is clear 
from a comparison of the results of Hirt (1967) and of Springer eta1 (1973) with MC data 
that the HNC equation is by far the best of these, both in terms of existence and accuracy 
of solutions. Ng (1974) has given an extremely accurate set of solutions of the HNC 
equation for a very wide range of values of r. 

The HNC approximation for the OCP may be represented by the equation 

g ( 0  = exp[-(A/S) + h(5) - 4513 ( 6 )  

together with the exact relations 

Here g ( 6 )  is the radial distribution function, c(6) is the direct correlation function and 
the Fourier transforms involved in the Ornstein-Zernike relation (8) are defined by 

Once the equations (6)-(8) have been solved for the structure functions h (e) and c ( [ ) ,  
the thermodynamic functions are easily obtained from them. The excess internal energy 
per ion uex is given by 

The thermal pressure (defined by the density derivative of the Helmholtz free energy) is 
given by 

(10) p p / p  - 1 = :puex. 
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Structure and thermodynamics are also related through the compressibility equation 
00 P(-) aP = 1-A- l  lo dff2(c(f)+$). 

a p  8 

The principal merit of the HNC results for the OCP is that, irrespective of the coupling 
strength, they yield rather accurate values of uex through (9) despite the inaccuracy of 
the HNC g ( f )  at strong coupling. This can be attributed to the fact that the HNC 
approximation reproduces the exact zeroth and second moments of h(5)  and is 
therefore expected to give an accurate (-1)th moment to which uex is proportional. 
Nevertheless, MC results show the non-static part of pueX at strong coupling to be 
O(I-’’~) as opposed to O(r’”) from the HNC results (De Witt 1976). The latter point is 
not especially significant in the intermediate-coupling regime where a more important 
shortcoming of HNC theory is its lack of thermodynamic consistency: that is, the exact 
thermodynamic relation 

P ( a p / a p ) S  = 1 +$fluex+$’(d/dr)(#3uex) (12) 
is not satisfied when pueX is taken from (9) and P ( a p / a ~ ) ~  from (1 1). Thus, although the 
HNC approximation is the best of the usual integral equation theories for the OCP, it still 
leaves considerable scope for improvement. 

The HNC approximation was originally derived from the Mayer graphical expansion 
where (6) results from the exact relation 

g(r)  = e x p ( - P ~ ( r ) + h ( r ) - c ( r ) + b ( r ) )  (13) 
upon neglecting the bridge graphs b(r) .  Various attempts to improve it have involved 
replacing b(r)  = 0 by a more realistic approximation. Ng (1974) used the empirical 
expression 

b ( x )  = -0.6I‘erf(O.O24r)/x (14) 
and achieved considerably enhanced accuracy for g ( x )  despite the fact that b ( x )  is 
known to be finite at x = 0 and of short range, both of which properties are violated by 
(14). This suggests that, in a modified HNC scheme, g ( x )  is insensitive to the long- and 
short-range behaviour of b ( x )  and so may depend crucially on its behaviour at 
intermediate x.  Equation (14) does, however, cause other problems such as a diver- 
gence in (11). 

MacGowan (1981) used the semi-empirical approximation 

b ( x )  = P exp(-x2) (15) 
which does not violate any of the known behaviour of b ( x )  and where the parameter P 
was chosen so as to yield values consistent with the exact result (Jancovici 1977) 

Again (15), with P determined by (16), caused a considerable improvement in g ( x )  but 
the thermodynamic consistency was even poorer than in the HNC approximation. 

Rosenfeld and Ashcroft (1979) combined the imposition of virial-compressibility 
consistency with the idea of the reference HNC equation (Lado 1973). In effect they set 
the OCP bridge graphs equal to the exact bridge graphs of a hard-sphere reference fluid 
whose packing fraction was adjusted to achieve thermodynamic consistency. Their 
results are of wide applicability and very accurate (and a priori self-consistent). 
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In the present paper, calculations of the lowest two orders of bridge graphs in the 
Abe-Meeron nodal expansion for the OCP are reported. The asymptotic behaviours of 
these graphs in the k + 0 limit (Deutsch et a1 1976) and the r + CO limit (Lavaud 1977) 
have been considered previously. Deutsch et a1 (1979) have also obtained the 
exponential factor in the r+CO decay of these graphs by analytic evaluation of the 
corresponding graphs for a one-dimensional OCP, arguing that this exponential factor is 
independent of dimension. Very recently, after the present work had been completed, 
Furutani et al (1981) published accurate numerical results for the third-order bridge 
graph in three dimensions. The slightly less accurate results given below are, however, 
adequate for the application considered here, namely the solution of corrected HNC 

equations formed by including the third- and fourth-order bridge graphs in various 
ways. These calculations are similar to those carried out for the hard-sphere fluid by 
Samec (1971). 

The organisation of the paper is as follows. In 02 the Abe-Meeron expansion is 
reviewed briefly and put into dimensionless Fourier-transformed form. The analytic 
reduction of the bridge graphs of order A3 and A4 in 03 is followed in 04 by their 
numerical evaluation. In 05 the modified HNC calculations are described and, finally, 
results and conclusions are given in 96. 

2. The Abe-Meeron expansion 

It is well known that all graphs in the usual Mayer expansion in powers of density 
diverge for the OCP due to the long range of the Coulomb potential. This difficulty is 
overcome by the Abe-Meeron resummation (Meeron 1958, Abe 1959, Hirt 1965) 
which yields expressions for the OCP binary correlation functions as sums of two-rooted 
irreducible graphs. In these each field point represents a factor p and there are two 
distinct bond functions: the Debye line 

no two of which may occur in series, and the Meeron line 

w(r) = exp(v(r)) - 1 - u ( r ) .  

A graph with two root points (1 and 2), n field points, I Debye lines joining pairs of 
points (i, j )  and m Meeron lines joining pairs of points ( p ,  q )  represents the integral 

where (T is a combinatorial factor. Expressing this last equation in terms of the 
dimensionless length 6 and the functions 

(17) 

w (5 )  = exp(v (6)) - 1 - (6) (18) 

U (5 )  = -(A/[) e-' 

we obtain 



Graphical correction of HNC theory 1011 

The Fourier transform $(k) of w ( 5 )  has been expressed as an infinite series in A and 
lnh (Del Rio and De Witt 1969, Furutani and Deutsch 1977, Guernsey 1978) from 
which 

2 r A 2  
k B(k) = - tan-'($k)+O(A3 In A). 

As will be seen below, the third-order bridge graph contains no w bond and the 
fourth-order bridge graphs contain at most one. Thus, for the present purpose of an 
expansion in A, w ( 5 )  may be replaced by 

1 2 -2Q wl(5) = T A  e It2. 
It follows that, for the restricted set of bridge graphs considered, (19) simplifies to 

It is now possible, using (20), to enumerate all bridge graphs (irreducible two-rooted 
graphs which cannot be subdivided into two parts connected in series or in parallel) of 
orders h3 and A4. They are shown in figure 1 where the lines are Debye lines and w1(5) is 
represented as a two-bubble. Figure l (a )  is the single third-order bridge graph while 
the remainder are all of fourth order. 

These graphs have been listed previously by Deutsch et a1 (1976), who did not, 
however, deal with the combinatorial factors U shown for each graph in figure 1. The 
values of U can be explained as follows. (i) For each graph there is the reciprocal of its 

( c )  0-112 

( f l  lo o = 2  

0 )  @ 0-112 

I / )  la2 o=112 

Figure 1. The bridge graphs of orders A3 and .A4 



1012 D MacGowan 

symmetry number (the number of permutations of field points leaving the graph 
invariant). (ii) Interchanging the root points 1 and 2 in graphs ( d ) ,  (e), ( f )  and (1) yields 
distinct graphs, and so these graphs must have an extra factor two in U. (iii) Reversing 
the order of the Debye line and two-bubble occurring in series in graph (e) generates 
two distinct graphs of identical value. Therefore (e) must have a further factor of two in 

Since the maximum number of field points in figure 1 is four, the corresponding 
integrals have (excluding a trivial azimuthal angle) maximum dimension eleven, which 
is rather high for numerical evaluation. Fortunately the situation is improved by 
Fourier transforming the graphs. This is achieved by substituting in (20) the relations 

v. 

exP(-5ii) 1 1 - d3k exp[ik * (si -ei)] - 6 j  2~ l + k 2  

and 

followed by simplifying the resulting expression using 

and 

f(k) may be represented graphically by adding to the graph for 1 ( t 1 2 )  external lines with 
wavenumber k at 1 and 2 and then assigning wavenumbers to all interna! lines in 
accordance with wavenumber conservation at each vertex. The evaluation of I ( k )  from 
its graph is carried out as follows. 

(i) For each Debye line (labelled K) there is a factor (1 + K 2 ) - ' .  
(ii) For each two-bubble (labelled K) there is a factor tan-l(%)/K. 
(iii) The resulting product is integrated over all internal wavenumbers. 
(iv) The numerical factor multiplying this integral is 

a(2T)3(- 1)1(2?T2)n-1-m~1+2m-n 

Figure 2 shows the Fourier-transformed graphs corresponding to the graphs of 
figure 1. In order to facilitate calculations the combinations 

&(k)  = & k ) + & ( k ) + b f ( k )  ( 2 5 )  

have been introduced, the broken lines representing the function 3Q' tan-'(iQ)/( 1 + 
Q2)2. There is some degree of flexibility in the assignment of internal wavenumbers, as 
illustrated by the two different choices for b;.(k); the reason for these will be made clear 
below. The maximum number of independent internal wavenumbers in figure 2 is 
three, and so the corresponding integrals now have maximum dimension eight (again 
excluding a trivial azimuthal angle). 
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3. Analytic sinplfication of the bridge graph integrals 

Further reduction of the dimensions of the integrals represented in figure 2 may be 
achieved by using the Goursat-Feynman relations which are described in the appendix. 
These methods were introduced in the context of the OCP by Mitchell and Ninham 
(1968) and were subsequently used by Deutsch et a1 (1976). The purpose of this section 
is to give the expressions for the bridge graph integrals which are used for their 
numerical evaluation in 94. Therefore the results are merely stated with minimal 
comment where appropriate. 

For the first three graphs, all wavenumber integrations can be simplified using 
equations (A.3) and (A.6): 

where 

and 

where 

e’,= z ( i - z ) k ’ +  1 (33)  

6’’ = w (1 - w )(x - ~ ) ~ k ’  + ~ ( i  + e,)’ + (1 - w )(I + e,)’. 
and 

(34) 

For the remaining graphs it is impossible to treat the integration over Q using the 
results of the appendix after all other integrations have been so treated. These integrals 
over Q are evaluated in terms of spherical polar coordinates with polar axis along k and 
polar angle cos-’? (-1 d t d  1). The integration over the azimuthal angle is always 
trivial, yielding a factor 27r, and the integration over I may sometimes be carried out 
analytically. In order to transform the radial integration to a finite interval the variable 
U defined byQ = u/( l  - U )  (0 c U d 1) is introduced. The following results are obtained 
using equations (A.3), (AS)  and (A.6): 
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f f2  = u2+  (k’+ 1)(1- U)’ (39) 

For the special case k = 0, 

gA(0)=,Io A4 ( u ~ - u + $ ) ~ ( ~ u ~ - ~ u + ~ )  (1 - u)u5  du tan-’(&). 1 - U  

(43) 
u’du B 

where 
A = k(x - y ) ( l -  U )  

and 
B = (e, + e,)(i -U). 

(44) 

(45) 

b;.,(k) = -A4 f 1 (1 - u ) ~ u ’ ~ u  f 1  dt[’g[’*[’% 
U + ( I - u ) ~  -1 e, 0’ A 

@+@‘+A 
[(z -~)’k’(l - U)’+ 2(2 -x)(z - y)ktu(l -U)+ (Z - Y)~u’+  (@+O’+A)2]2 

X 

(46) 
where 

= (1 - u p x  (47) 
@I2 = y ( 1 -  y)u2 + (1 - u)2 (48) 

and 

(50) 
@+A’ 

[x2k2(1 - ~ ) ~ + 2 ~ ( 1  - y ~ ) k t ~ ( l -  ~ ) + ( l  - y ~ ) ~ u ~ + ( @ + A ’ ) ~ ] ~  
X 

where 
Ar2 = ~ ( 1 -  r )y2u2+ ~ ( 1 -  U + (1 - ~ ) ( l -  U)’. (51) 

@+A‘ 
X (52) * (x’k2(1 --u)’+2~(1- yz)ktu(l - u ) + ( l  -yr)’u2+ 
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@+@‘+A 
X 
[(z -X)’k2(1 -U)’+ 2(2 - x ) ( z  - y)ktu( l  - U )  + (Z -Y)’u*+ (0 +a’+ ‘ 

(53) 
Clearly there are strong similarities between (46) and (53) and between (50) and (52); 
that is, &k) may be cast in two different forms, one similar to &(k) and one similar to 
&k). It is thus convenient to evaluate as a single entity the combination 

&(k) = &k)+&(k)+&(k).  (54) 

It would be easy to perform the integration over t analytically in (50) and (52) but not in 
(46) and (53) (due to the t dependence of A). Therefore, since the combination &(k) is 
considered, none of these integrations over t is performed analytically. 

4. Numerical evaluation of the bridge graphs 

The single integral (42) for SA(O) was evaluated using a compound Simpson’s rule. 
Almost all of the multi-dimensional integrals required were evaluated using the 
Harwell subroutine QBoiA which uses product formulae and allows different dimen- 
sions of the integration to be tackled by independent algorithms chosen from (1-16)- 
point Gaussian quadrature, Chebyshev integration and an adaptive Simpson’s rule. Of 
these, the former is simplest and quickest but it is difficult to gauge its accuracy except by 
comparison with the latter pair, both of which can be assigned a fixed (relative) accuracy 
which QBOIA seeks to achieve. In the Chebyshev case, however, the accuracy assigned 
is sometimes not achieved and the adaptive Simpson’s rule uses a prohibitive amount of 
computer time for hard integrals of high dimension. Indeed, the present integration 
techniques are only just feasible for a five-dimensional integral (with a parameter) and 
for any higher-dimensional integral it would be necessary to use a Monte Carlo 
integration method. 

LS and b*v was evaluated for 0.0 S k G 
10.0 at intervals of 0.1. For b,, bA, bb and bs these evaluations were all achieved using 
the adaptive Simpson:s ruleA for each dimension with accuracy The higher- 
dimensional integrals b, and bv were evaluated using 16-point Gaussian quadrature for 
each dimension and a few of the results were checked against more time-consuming 
Simpson’s-rule calculations. The two sets of results were found to a ree t:at least two 
significant figures and so, in view of the lower order of magnitude of l! and bv compared 
with the other integrals of order A4 (see figure 4), the values obtained forFc and &using 
16-point Gaussian quadrature were deemed satisfactory. In evaluating bv, a choice had 
to be made between the two alternative expressions (46 )pd  (50) for & It was found, by 
comparison with the Simpson’s-rule results, that, when bj was calculated using 16-point 
Gaussian quadrature, (50) was more accurate for k S 2.0 while (46) was preferable for 
k > 2.0. 

Initially each of the function; &, 

Figure 3 shows the third-order bridge graph 

&(k) = 6,(k) ( 5 5 )  

for 0.0 s k s 10.0. For the same range of k, the individual fourth-order bridge graphs 
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0.15 h 

k 

Figure 3. The Fourier-transformed bridge graph of order A3 

are displayed together in figure 4 and their sum 

64(k )=  b a ( k ) + 6 ~ ( k ) + 6 ~ ( k ) + 6 ~ ( k ) + 6 ” ( k )  (56) 

is shown in figure 5 .  In addition, table 1 gives some numerical values for &(k)  and 
64(k). 

The input required for a modified HNC theory as outlined in $1 is some approximant 
to b(5)  rather than to 6(k). In order to obtain b3(5) and b4(5) from & ( k )  and l4(k) 
respectively the asymptotic behaviour of the latter functions as k + 00 must be deter- 
mined. It is difficult to do this analytically and it is therefore necessary to rely on the 
results of numerical quadrature but, as will now be shown, analysis can give some 
indication of the functional form of i 3 ( k )  and J4(k) in the limit k + 00. 

In considering &k), given by (27), it is convenient to divide the square region of 
integration into parts: 

(1) k-’ s x d 1 - k-’ k-’ Q y Q 1 - k-’ 

(11) k -’ s x s 1 - k -’ 0s y Q k-’. 

Due to the symmetry of the integrand in (27) under reflection in both diagonals of the 
iFtegration region, there are three other subregions which give the same contribution to 
b3(k )  as (11). For k >> 1 the following approximations are valid. In (I), 

8;  - k 2 y ( l  - Y ) ,  8:-k2x(l-x) 
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0.3 ~ 

0.2 - \ 

-0.1 t 

Figure 4. The individual Fourier-transformed 
bridge graphs of order A4. 

2 4 6  8 10 
k 

Figure 5. The total Fourier-transformed bridge 
function of order A4. 

leading to a contribution to & ( k )  of order In k / k 4 .  In (11) 

6:- k2x(1  - x )  X - Y - X  1 + e, + e, - e,, 
yielding a contribution of order k-7'2 to J3(k ) .  It is difficult to approximate the 
integrand of (27) close to the points (0,O) and (1,l) in the limit k -* 00 and this prevents a 
complete analytic estimation of J 3 ( k )  in this limit. 

It is important to notice, however, that, for large k, the dominant contribution to 
(27) comes from a thin strip around the edge of the square integration area. Thus, 
although the integrand is finite-valued everywhere for all k, it has a very sharply peaked 
behaviour near the boundary of the integration region when k is large. This almost 
singular behaviour stems from the appearance of 6;' (and 0;') in the integrand. Since 
0;' is also present in all of the other integrals, they may be expected to have a similar, 
almost singular, behaviour for large k. It may therefore be anticipated that Gaussian 
quadrature will not give reliable results for any of these integrals at large k. This 
situation does not matter for the two- and three-dimensional integrals which may (as at 
low k) be evaluated using Simpson's rule, albeit with a reduced relative accuracy 
for k 2 50). For & ( k )  and &k),  where 16-point Gaussian quadrature was used at low 
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Table 1. Fourier-transformed bridge graphs. 

1019 

k -K363(k) 1I-~64(k) 

0.0 
0.1 
0.2 
0.4 
0.6 
0.8 
1 .o 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 
3.2 
3.4 
3.6 
3.8 
4.0 
4.5 
5.0 
5.5 
6.0 
7.0 
8.0 
9.0 

10.0 

1.745 x lo-' 
1.740 x lo-' 
1.725 x lo-' 
1.666 x lo-' 
1.575 x lo-' 
1.461 x lo-' 
1.333 x lo-' 

1.071 x lo-' 
9.478 x lo-' 
8.344 x lo-' 
7.321 x 
6.411 x lo-' 
5.611 X lo-' 
4.912 x lo-' 
4.304 x lo-' 

3.321 X 
2.926 X lo-' 
2.584 x 
2.288 x lo-' 
2.032 x lo-' 
1.526 X lo-' 
1.164X lo-' 
9.016X 
7.082 X 
4.539 x 10 -~  
3.040 x 
2 . 1 1 2 ~ 1 0 - ~  
1 . 5 1 3 ~ 1 0 - ~  

1.201 x lo-' 

3.777 x lo-' 

4.039 X lo-' 
4.036 X lo-' 
4.026 X lo-' 
3.987 X lo-' 
3.923 x lo-' 
3.838 X lo-' 

3 . 6 1 2 ~  lo-' 

3.333 x lo-' 
3 . 1 8 2 ~  lo-' 
3.027 X lo-' 
2.870 x lo-' 
2.715 x lo-' 
2.563 x lo-' 
2.415 X lo-' 
2.274 X lo-' 
2 . 1 3 7 ~  lo-' 
2.008 x lo-' 
1.887 X lo-' 
1.772 X lo-' 
1.665 X lo-' 
1.425 x lo-' 
1.223 x lo-' 
1.054 x lo-' 
9 . 1 3 0 ~  
6.946 X lo-' 
5.386 X lo-' 
4.251 X lo-' 
3.410 X lo-' 

3.733 x lo-' 

3.477 x lo-' 

k, however, a general-purpose 10-point quadrature formula (Harris and Evans 1977) 
which can cope with integrabl: end-point singularities was used at large k. This formula 
was found to give results for b,(k)  in satisfactory agreement with those obtained using 
Simpson's rule. 

The above analysis of L3(k) suggests the asymptotic form 

63(k) was evaluated for several large values of k (in the range 20 d k d 200) using the 
adaptive Simpson's rule of QBoiA. A least-squares fit of these values assuming the 
functional form (57) leads to the approximate result 

(58 )  

which agrees with the calculated values of L3(k) to within the relative accuracy set by 

The type of analysis of L3(k) which led to (57) is not feasible for &(k) but it is clear 
that b d ( 5  = 0) represents a divergent integral. This divergence is not cancelled in order 
A4 and it may therefore be concluded that b4(5 = 0) is also divergent. It follows that 

= -0.03350 k-7/2- 12.53 k-4 In k + 13.91 k-4 (k 2 20), 

QBOIA. 
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L4(k) falls off less rapidly than k - 3  as k + 00, and that the major contribution to g4(k)  in 
this limit comes from l A ( k )  (which includes & ( k ) ) .  All of the fourth-order bridge 
graphs were evaluated for several large values of k (in the range 10 S k 4 100) using the 
general-purpose integration formula of Harris and Evans (1977) mentioned above 
whenever it was impossible or unnecessary to use either Simpson’s rule or Chebyshev 
integration. J4(4(k) was approximated by various three-parameter functions (all consis- 
tent with its long range) and the best least-squares fit found was 

K 4 L 4 ( k )  = -2.176 k - 5 / 2 +  33.69 k T 3  In k - 36.60k-3 (k z 10). (59) 

This fit is almost, but not quite, as accurate as (58) .  It must be regarded with suspicion 
for very large k since it then becomes negative whereas the true function J4(k)  is 
expected to remain positive for all k. 

The numerical results for l 3 ( k )  and 14(k) together with the asymptotic expressions 
(58)  and (59) permit b 3 ( t )  and b4(5) to be calculated by inverse Fourier transformation. 
The results for small .f are shown in figures 6 and 7 and table 2 .  In the numerical Fourier 
transformation, the discontinuity at the cut-off point leads to spurious oscillations which 
become important at large 5; The results at high 8 therefore had to be obtained by 
extrapolation from the intermediate 6 region using least-squares fits. The asymptotic 

U 0 5  1 0  

5 

Figwe 6. The configuration space bridge graph of 
order A3. 

5 

Figure 7. The contribution of order A4 to the 
configuration space bridge function. 
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Table 2. Configuration space bridge graphs. 

0.00 
0.02 
0.04 
0.06 
0.08 
0.10 
0.12 
0.14 
0.16 
0.18 
0.20 
0.22 
0.24 
0.26 
0.28 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.70 
0.80 
0.90 
1 .oo 
1.10 
1.20 
1.40 
1.60 

2.569 X lo-' 
2.192 X lo-' 
1.953 x lo-' 
1.763 X lo-' 
1.604 x lo-' 
1.467 X lo-' 
1.347 x lo-' 
1.241 x lo-' 
1.147 x lo-' 
1.062 x lo-' 
9.846 X 
9.147 x lo-' 
8 . 5 1 0 ~  lo-' 
7.927 x lo-' 
7 . 3 9 2 ~  
6.901 x lo-' 
5.833 x loW2 

4.224 x lo-' 
3.614 X 
3.100 x lo-' 
2.667 x lo-' 
1.986 x 
1.489 x lo-' 
1.123 X lo-' 
8.516 x 
6.484 X 

2.922 X 

1.741 X 

4.954 x lo-' 

4.955 x 10 -~  

CO 
7.884 x 10' 
5.023 X 10' 
3.646 x 10' 
2.809 x 10' 
2.240 X 10' 
1.829X 10' 
1.518X10' 
1.276 x 10' 
1.083 x 10' 
9.271 X lo-' 
7.988 x lo-' 
6.922 x lo-' 
6.027 x lo-' 
5.270 x lo-' 
4.626X lo-' 
3.385 x lo-' 
2.518X lo-' 
1.896 X lo-' 
1.443 x lo-' 
1.107xlO-' 
8.555 X lo-' 
5.188 X 
3.197 x lo-' 
1.995 x 
1.258 x lo-' 
8.001 x 
5 . 1 1 2 ~  
2.086X low3 
8.578 x 

forms found in this way are 
e-3t 

0.1257 7 + 0 . 2 2 3 8  - (5 3 2.5) 6 5 
A-3b3([) = -0.03696 - - 

5 
and 

e-5' 
A-4b4(5) = 1.017 e-"+ 11.25 - -14.18 7 (6 3 2.0). (61) 

5 5 
The approximate formulae (60) and (61) are not nearly as reliable as (58 )  and (59), but 
this is not expected to be crucial to the modified HNC results below since the functions 
b3(5) and b4(5) are both very short ranged, 

5. Modified HNC approximations 
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and 

G(6) = A-4b4(5) 

the most obvious approximations to make for b(5)  are 

b(5)  = -A3F(t )  
and 

b(6)  = -A3F(5)  + A4G(6). 

Both (64) and (65) may be expected to yield satisfactory modified HNC results in the 
weak-coupling regime r s 0.7 (A == 1). A 'generalised PadC' approximant is also 
considered in an attempt to extend the range of validity of the modified HNC results. 
This approximant has the form 

which reproduces the correct A + 0 limiting behaviour for arbitrary (real) w. In order to 
obtain the expected strong-coupling behaviour (b(4)  a ra A2l3, A -f CO) w must be 
chosen as f, yielding 

Equation (66) seems to represent the best hope for an approximation based on the 
above integrals which may remain valid beyond the weak-coupling regime. 

All of the modified HNC theories considered here can be obtained by replacing 
equation (6) in the HNC approximation by 

g ( 5 )  =expC-(h/5)+h(E)-c(5)+ b ( 8 1  (67) 

with b(6) given by (64), (65) and (66) respectively. These theories have been solved 
numerically using a suitably modified form of the Ng (1974) iteration procedure 
(expressed in terms of A and 6 rather than J? and x ) ;  the number of iterations required 
for convergence was about the same as for the usual HNC scheme. 

The accuracy of the iteration procedure was checked by seeing that variation of the 
number and spacing of discrete mesh points for 6 and k did not significantly affect the 
results. A simpler criterion for accuracy was found to be agreement between the values 
of @""calculated from (9a)  and (96). It had originally been felt that the Cooper (1973) 
solution of the HNC approximation might be a more suitable basis for the present 
calculations than the Ng method since the former is explicitly based on the Abe- 
Meeron expansion. It was found, however, that lalthough the Cooper method gives 
accurate values for h(6)  it does not do so for h ( k ) .  Equations (9u) and (9b) are 
therefore not in agreement for the Cooper iteration scheme with only (9a) yielding an 
accurate value for f lueX. 

Modified HNC calculations were carried out for I's 10 though it should be temem- 
bered that the regime of interest in connection with inertial confinement plasmas is 
I'd 1. The three different approximations (64), (65) and (66) were each used in turn but 
(65) gave no solutions for r 3 1 where the bridge graphs of order A4 dominate those of 
order A3 for small 6, leading to divergence of g(6) as '-* 0. 
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6. Results and conclusions 

The results obtained for the radial distribution function g(6) and the (static) structure 
factor 

S(k)  = 1 + (47rA)-'G(k) (68) 

using the usual HNC approximation and the modified approximations with (64) and (66) 
are shown for I' = 1 and r = 10 in tables 3-6. The three sets of results are remarkably 
similar to one another. The two major deficiencies of the HNC results for g(6)  are 
(Cooper 1973) that oscillations at large 6 have too small an amplitude and that g ( [ >  
increases from zero too rapidly at small 6. Table 5 shows that both of these aspects are 
improved by the modified approximations but the former only very slightly so. Table 6 
shows that the amplitude of oscillations in S(k)  is also siightly increased in the modified 
approximations. 

In table 7 are displayed the excess internal energies of the OCP as found by the 
various approximate theories using (9), together with the MC results of Slattery et a1 

Table 3. The OCP radial distribution function at r = 1 

~ 

5 HNC Equation (64) Equation (66) 

0.2 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 

0.000 
0.034 
0.079 
0.140 
0.209 
0.281 
0.353 
0.422 
0.486 
0.546 
0.600 
0.648 
0.692 
0.731 
0.765 
0.795 
0.822 
0.845 
0.884 
0.913 
0.935 
0.951 
0.964 
0.983 
0.992 
0.996 
0.998 
0.999 
1.000 

0.000 
0.026 
0.066 
0.123 
0.190 
0.263 
0.336 
0.408 
0.474 
0.536 
0.593 
0.644 
0.689 
0.729 
0.765 
0.796 
0.823 
0.847 
0.885 
0.914 
0.936 
0.952 
0.964 
0.983 
0.992 
0.996 
0.998 
0.999 
1.000 

0.000 
0.033 
0.079 
0.139 
0.208 
0.280 
0.351 
0.420 
0.484 
0.543 
0.598 
0.646 
0.690 
0.729 
0.764 
0.795 
0.821 
0.845 
0.884 
0.913 
0.935 
0.952 
0.964 
0.983 
0.992 
0.9% 
0.998 
0.999 
1.000 
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Table 4. The OCP structure factor at r = 1 

k HNC Equation (64) Equation (66) 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 
3.5 
4.0 
4.5 
5.0 
6.0 

0.000 
0.010 
0.039 
0.085 
0.143 
0.211 
0.285 
0.359 
0.433 
0.502 
0.567 
0.678 
0.765 
0.831 
0.878 
0.913 
0.938 
0.956 
0.968 
0.978 
0.984 
0.993 
0.997 
0.999 
1 .ooo 
1 .ooo 

0.000 
0.010 
0.039 
0.084 
0.143 
0.210 
0.283 
0.357 
0.429 
0.498 
0.562 
0.673 
0.760 
0.825 
0.874 
0.910 
0.936 
0.954 
0.967 
0.977 
0.984 
0.994 
0.998 
1.000 
1.000 
1.001 

0.000 
0.010 
0.039 
0.084 
0.143 
0.21 1 
0.284 
0.358 
0.432 
0.501 
0.565 
0.677 
0.764 
0.830 
0.878 
0.913 
0.938 
0.956 
0.969 
0.978 
0.984 
0.993 
0.997 
0.999 
1.000 
1.000 

(1980) obtained from the least-squares fit 

puex = -0.89752r + 0.94544r”~ - 0.80049 + 0.17954r-1/4 (69) 
for r 3 1 and from their tabulated results for r < 1. For r s 0.4 the HNC results seem to 
be accurate since none of the bridge graphs added in the modified theories affects them 
appreciably. The close agreement among all the theoretical results, excluding those 
based on the questionable (65), for rS0.7  suggests that the theories may be more 
reliable than MC simulations in this range of the coupling parameter. Thus these HNC 
and modified HNC results partially fill a gap in accurate results for pueX between r = 0.1, 
below which the Debye-Hiickel theory is satisfactory, and r = 1, above which (69) is 
believed to be exact. If the MC data are indeed exact for I? a 1 then table 7 shows that 
the modified HNC theories based on (64) and (66) improve on the usual HNC values of 
puex, at least for 1 s r s  10. For r = 10, however, this improvement is only slight. 

Table 8 shows the inverse compressibility of the OCP as found in the various 
approximations through equation (11). The final column of MC results is calculated 
from the MC energy results using (12). It is clear from this table that using (66) for b ( [ )  
yields an improvement in compressibility values compared with the HNC results. 
However, for r 3 2 ,  which coincides approximately with the onset of short-range order 
and of negative compressibility, the small improvement in compressibility values 
brought about by using (66) still leaves the results very inaccurate. 
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Table 5. The OCP radial distribution function at r = 10. 

5 HNC Equation (64) Equation (66) 

2.8 
3.2 
3.6 
4.0 
4.4 
4.8 
5.2 
5.6 
6.0 
6.4 
6.8 
7.2 
7.6 
8.0 
8.4 
8.8 
9.2 
9.6 

10.0 
11.0 
12.0 
13.0 
14.0 
16.0 
18.0 
20.0 
22.0 

0.000 
0.001 
0.007 
0.024 
0.063 
0.132 
0.232 
0.358 
0.499 
0.641 
0.773 
0.885 
0.973 
1.036 
1.077 
1.098 
1.105 
1.101 
1.090 
1.051 
1.016 
0.995 
0.987 
0.993 
1.001 
1.002 
1 .ooo 

0.000 
0.000 
0.001 
0.010 
0.046 
0.117 
0.224 
0.356 
0.502 
0.647 
0.780 
0.892 
0.979 
1.041 
1.080 
1.101 
1.106 
1.101 
1.090 
1.050 
1.014 
0.994 
0.987 
0.994 
1.001 
1.002 
1 .ooo 

0.000 
0.000 
0.001 
0.011 
0.046 
0.117 
0.224 
0.356 
0.502 
0.647 
0.780 
0.892 
0.979 
1.041 
1.080 
1.101 
1.106 
1.101 
1.090 
1.050 
1.014 
0.994 
0.987 
0.994 
1.001 
1.002 
1.000 

In conclusion, it has turned out as expected that, overall, the best of the modified 
HNC theories above is provided by equation (66) although results based on (66) are not 
uniformly superior to those based on (64). For 10, the HNC values of g(5) and 
especially pueX are already quite accurate. Using (66) or (64) for b(5)  does not change 
the values very much but does cause marginal improvement. In the range r=s 0.7, the 
close agreement of HNC results for pueX with those obtained using (64) and (66) 
enhances confidence in all three sets of results. Finally, (66) leads to a significant 
improvement in compressibility values for r S 2. Since the corresponding excess 
internal energies are known to be accurate, this implies an improvement in thermo- 
dynamic consistency, lack of which is the major shortcoming of the unmodified HNC 
theory in this range of coupling strengths. 
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Table 6. The OCP structure factor at r = 10. 

S ( k )  

k HNC Equation (64) Equation (66) 

0.00 
0.10 
0.20 
0.30 
0.40 
0.44 
0.48 
0.52 
0.56 
0.60 
0.64 
0.68 
0.72 
0.76 
0.80 
0.84 
0.88 
0.92 
0.96 
1.00 
1.10 
1.20 
1.40 
1.60 
1.80 
2.00 
2.50 

0.000 
0.010 
0.046 
0.120 
0.259 
0.339 
0.434 
0.541 
0.657 
0.773 
0.880 
0.970 
1.038 
1.081 
1.104 
1.109 
1.104 
1.091 
1.075 
1.058 
1.021 
0.999 
0.988 
0,995 
1 .OD0 
1.001 
1 .ooo 

0.000 
0.010 
0.046 
0.120 
0.258 
0.337 
0.430 
0.537 
0.651 
0.767 
0.875 
0.966 
1.035 
1.080 
1.104 
1.111 
1.107 
1.094 
1.078 
1.062 
1.024 
1.000 
0.988 
0.994 
1.000 
1.001 
1 .ooo 

0.000 
0.010 
0.046 
0.120 
0.258 
0.337 
0.430 
0.537 
0.651 
0.767 
0.875 
0.966 
1.035 
1.080 
1.104 
1.111 
1.106 
1.094 
1.078 
1.061 
1.024 
1 .ooo 
0.988 
0.994 
1.000 
1.001 
1.000 

Table 7. Excess internal energy of the OCP. 

~ - ~ ~~~ ~ 

- p U e x  

r HNC Equation (64) Equation (65) Equation (66) MC 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
2.0 
4.0 
6.0 

10.0 

0.02568 
0.06848 
0.1195 
0.1759 
0.2360 
0.2991 
0.3644 
0.4317 
0.5004 
0.5705 
1.3153 
2.9109 
4.5621 
7.9354 

0.02568 
0.06849 
0.1196 
0.1761 
0.2364 
0.2999 
0.3657 
0.4336 
0.5032 
0.5743 
1.3334 
2.9434 
4.5912 
7.9494 

0.02568 
0.06848 
0.1195 
0.1757 
0.2356 
0.2979 
0.3619 
0.4266 
0.4900 

0.02568 
0.06849 
0.1195 
0.1759 
0.2362 
0.2993 
0.3647 
0.4321 
0.5010 
0.5712 
1.3193 
2.9275 
4.5858 
7.9492 

0.1225 
0.1784 
0.2383 
0.3018 
0.3668 
0.4337 
0.5035 
0.5730 
1.3202 
2.9266 
4.5912 
7.9935 
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Table 8. Inverse compressibility of the OCP. 

m p l a p ) ,  
~ ~ ~~ 

r HNC Equation (64) Equation (65) Equation (66) MC 

0.1 0.9873 0.9873 0.9873 0.9873 - 
0.2 0.9663 0.9667 0.9666 0.9666 - 
0.3 0.9414 0.9424 0.9419 0.9421 - 
0.4 0.9138 0.9161 0.9144 0.9152 0.9148 
0.5 0.8842 0.8884 0.8845 0.8866 0.8863 
0.6 0.8531 0.8599 0.8521 0.8566 0.8566 
0.7 0.8207 0.8308 0.8173 0.8256 0.8264 
0.8 0.7873 0.8012 0.7798 0.7937 0.7947 
0.9 0.7528 0.7713 0.7384 0.7610 0.7625 
1 .o 0.7176 0.7411 - 0.7277 0.7305 
2.0 0.3332 0.4170 - 0.3691 0.3875 
4.0 -0.5307 -0.3938 - -0.4389 -0.3408 
6.0 -1.460 -1.345 - -1.359 -1.091 

10.0 -3.423 -3.373 - -3.374 -2.618 

Appendix. Derivation of relations used in 9 3 

For a > 0 and b >O, 

1 ’  dx 
ab=lo [ a x + b ( l - ~ ) ] ~ ‘  

Also, for A > 0 and B > 0, 

1 Z d3 Q ?r I ( Q 2 + A Z ) [ ( Q + k ) ’ + B 2 l 2 = K  k Z + ( A + B ) 2 m  

Applying (A.l) and then (A.2) gives 

1 1 
d3 Q =?rq dx f (Q2+A2)[(Q+kl)Z+B:IC(Q+k2)2+B:l 7 ( k z - x k 1 ) 2 + ( ~ 2 + e ) 2  

where 

e’= ~ ( l  - X ) k : + x B : + ( l  -x)AZ. 

Differentiating (A.3) with respect to B2 results in 

d3 Q B z + 8  f [ ( ~ Z - X ~ ~ ) ~ + ( B Z + ~ ) ~ I ~ ’  
(A.5) 

Finally, using (A.l) and then (A.5) yields 
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